vif in python
from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error import warnings warnings.filterwarnings('ignore') X_train, X_test, y_train, y_test = train_test_split(df[vif_df.attributes.values], y) #Data Engineering encoder = StandardScaler() encoder.fit(X_train) X_train[X_train.columns] = encoder.transform(X_train) X_test[X_test.columns] = encoder.transform(X_test) #Model Implementation model = LinearRegression() model.fit(X_train, y_train) #Model Scoring predictions=model.predict(X_test) mean_squared_error(predictions,y_test)