underfitting decision trees
from sklearn.tree import DecisionTreeRegressor # Train a decision tree regressor tree = DecisionTreeRegressor(max_depth=4, random_state=42) tree.fit(X_train, y_train) # Calculate training and testing errors train_error_tree = mean_squared_error(y_train, tree.predict(X_train)) test_error_tree = mean_squared_error(y_test, tree.predict(X_test)) print(f'Training error (Decision Tree): {train_error_tree:.2f}') print(f'Testing error (Decision Tree): {test_error_tree:.2f}')