target encoding
## Importing Libraries import pandas as pd from category_encoders import TargetEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.ensemble import RandomForestClassifier ## Importing Dataset columns=['class','age','menopause','tumor_size','inv_nodes','node_caps','deg_malig','breast','breast_quad','irradiat'] df=pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer/breast-cancer.data",names=columns) ## Data Processing df['class']=df['class'].apply(lambda x: 0 if x=='no-recurrence-events' else 1) categorical_data=df.select_dtypes(include=['object']) df_te=df.copy() ## Encoding for col in df_te.select_dtypes(include=['object']).columns: target_encoder=TargetEncoder() df_te[col]=target_encoder.fit_transform(df_te[col],df_te['class']) ## Splitting Dataset y=df_te.pop('class') X_train, X_test, y_train, y_test = train_test_split(df_te, y, test_size=0.1, random_state=42) ## Model Implementation clf = RandomForestClassifier() clf = clf.fit(X_train, y_train) predictions=clf.predict(X_test) print(classification_report(predictions,y_test))