StandardScaler
from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split df=df.drop(columns=['date']) y=df.pop('Press_mm_hg') X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.33, random_state=42) standard_scaler=StandardScaler() standard_scaler.fit(X_train) X_train[X_train.columns]=standard_scaler.transform(X_train) X_test[X_train.columns]=standard_scaler.transform(X_test) X_train