regularization ridge regression
from sklearn.linear_model import Ridge from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split # Load the Digits dataset digits = load_digits() X = digits.data y = digits.target # Split the data into training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create and fit the Ridge model ridge = Ridge(alpha=1.0) ridge.fit(X_train, y_train) # Evaluate the model train_score = ridge.score(X_train, y_train) test_score = ridge.score(X_test, y_test) print(f'Train score: {train_score}') print(f'Test score: {test_score}')