overfitting gridsearchcv
from sklearn.model_selection import GridSearchCV decisiontree = DecisionTreeClassifier(random_state=43) params = {'max_depth':[3,5,7], 'min_samples_leaf':[3,5,10], 'min_samples_split':[8,10,12]} grid_search = GridSearchCV(estimator=decisiontree,param_grid=params,cv=4,n_jobs=-1, verbose=True, scoring='accuracy') grid_search.fit(X_train, y_train) print('nBest Parameters:',grid_search.best_params_) print('nBest Score:',grid_search.best_score_)