neural networks hyperparameter tuning
from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import classification_report from sklearn.model_selection import GridSearchCV import numpy as np import warnings warnings.filterwarnings('ignore') X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.25, random_state=42) scaler = MinMaxScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model = MLPClassifier() param_grid = {'hidden_layer_sizes':[250,300], 'activation':['tanh', 'relu'], 'solver':['sgd', 'adam'], 'alpha' : [0.1,0.2], 'learning_rate': ['adaptive','invscaling'] } gridsearchcv = GridSearchCV(model, param_grid, cv = 3, verbose=True, n_jobs=-1) best_parameters = gridsearchcv.fit(X_train, y_train) best_parameters