multicollinearity ridgecv
# Import Libraries from sklearn.linear_model import RidgeCV # Define the range of alpha values to consider alphas = np.logspace(-5, 5, 100) # Fit the RidgeCV model ridge_cv = RidgeCV(alphas=alphas, cv=3) # 3-fold cross-validation ridge_cv.fit(X_train, y_train) # Get the best alpha value best_alpha = ridge_cv.alpha_ print("Best alpha:", best_alpha) # Evaluate the model with the best alpha value y_pred = ridge_cv.predict(X_test)