multicollinearity ridge regression
# Import Libraries import pandas as pd from sklearn.linear_model import Ridge # Data Processing y=df.pop('Next_Tmin') X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.3) # Fit the Ridge model ridge = Ridge(alpha=1.0) ridge.fit(X_train, y_train) # Evaluate the model y_pred = ridge.predict(X_test) ridge.score(X_test,y_test)