Maxabs scaler full code
#Import Libraries import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import OrdinalEncoder from sklearn.pipeline import make_pipeline from sklearn.preprocessing import MaxAbsScaler #Data Processing df=pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/00542/log2.csv") ordinalencoder=OrdinalEncoder() df['Action']=ordinalencoder.fit_transform(np.reshape(df['Action'].values,(-1,1))) y=df.pop("Action") X_train, X_test, y_train, y_test = train_test_split(df, y, random_state=42,test_size=0.1) # Feature Scaling pipe_maxabs = make_pipeline(MaxAbsScaler(), LogisticRegression(max_iter=2000)) pipe_maxabs.fit(X_train, y_train) pipe_maxabs.score(X_test, y_test)