leave p out cross validation complete code
import numpy as np import pandas as pd from numpy import array from sklearn.model_selection import cross_validate from sklearn.model_selection import KFold from sklearn.model_selection import LeavePOut from sklearn.ensemble import RandomForestClassifier import warnings warnings.filterwarnings('ignore') df=pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/00611/accelerometer.csv") y=df.pop("wconfid") leavepout = LeavePOut(p=2) model = RandomForestClassifier() scoring=['balanced_accuracy','precision_macro','recall_macro'] cv_score = cross_validate(model, df[:6], y[:6],scoring=scoring ,cv=leavepout, n_jobs=-1) cv_score