Feature Selection with regularized model
#Import Libraries import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import SelectFromModel # Data Processing df=pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/00537/sobar-72.csv") y=df.pop('ca_cervix') #Feature Selection model = LogisticRegression(penalty='l1',solver='liblinear') regularization_based = SelectFromModel(estimator=model).fit(df, y) transformed_data=regularization_based.transform(df) regularization_based.get_feature_names_out()