feature selection sequentialfeatureselector complete code
#Import Libraries import numpy as np import pandas as pd from sklearn.feature_selection import SequentialFeatureSelector from sklearn.linear_model import LogisticRegression # Data Processing df=pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/00537/sobar-72.csv") y=df.pop('ca_cervix') #Feature Selection model = LogisticRegression(max_iter=3000).fit(df, y) forward_sfs = SequentialFeatureSelector(model, n_features_to_select=10, direction="forward").fit(df, y) df.columns[forward_sfs.get_support()]