f1 score complete code
# Import Libraries import pandas as pd from sklearn.preprocessing import OrdinalEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import precision_score, recall_score, f1_score from sklearn.ensemble import RandomForestClassifier #Dataset columns=['class','age','menopause','tumor_size','inv_nodes','node_caps', 'deg_malig','breast','breast_quad','irradiat'] df=pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer/breast-cancer.data",names=columns) # Feature Engineering ordinalencoder=OrdinalEncoder() categorical_data=df.select_dtypes(include=['object']) transformed_data=ordinalencoder.fit_transform(categorical_data) df[categorical_data.columns]=transformed_data # Data Splitting y=df.pop('class') X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.1, random_state=42) # Model Implementation clf = RandomForestClassifier() clf = clf.fit(X_train, y_train) predictions=clf.predict(X_test) print(f1_score(predictions,y_test))