bias variance tradeoff
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.model_selection import cross_val_score, train_test_split # Train a linear regression model lr = LinearRegression() lr.fit(X_train, y_train) # Evaluate the model using cross-validation cv_scores = cross_val_score(lr, X_train, y_train, cv=5, scoring='neg_mean_squared_error') cv_scores = -cv_scores # Calculate the average MSE and its standard deviation avg_mse = cv_scores.mean() std_mse = cv_scores.std() print(f"Cross-Validation MSE: {avg_mse:.2f} +/- {std_mse:.2f}")