bagging and boosting
from sklearn.datasets import load_wine from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split # Load the Wine dataset wine = load_wine() X, y = wine.data, wine.target # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Initialize a Decision Tree Classifier dt = DecisionTreeClassifier(random_state=42) # Initialize a Bagging Classifier bagging = BaggingClassifier(dt, n_estimators=10, random_state=42) # Train the Bagging Classifier bagging.fit(X_train, y_train) # Evaluate the performance of the Bagging Classifier print("Accuracy:", bagging.score(X_test, y_test))