advanced classification metrics
import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score from sklearn.metrics import matthews_corrcoef, cohen_kappa_score # Load the Iris dataset data = load_iris() X, y = data.data, data.target #Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) #Train a logistic regression model model = LogisticRegression(max_iter=1000) model.fit(X_train, y_train) #Make predictions y_pred = model.predict(X_test) # Calculate advanced classification metrics mcc = matthews_corrcoef(y_test, y_pred) kappa = cohen_kappa_score(y_test, y_pred) print(f"MCC: {mcc:.2f}, nKappa: {kappa:.2f}")