accuracy precision recall
from sklearn.neural_network import MLPClassifier from sklearn.metrics import precision_score,recall_score # Create a classifier: a support vector classifier mlp = MLPClassifier() # Split data into 50% train and 50% test subsets X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.5, shuffle=False) # Learn the digits on the train subset mlp.fit(X_train, y_train) # Predict the value of the digit on the test subset predicted = mlp.predict(X_test) print("Precision Score:",precision_score(y_test, predicted,average='micro')) print("Recall Score:",recall_score(y_test, predicted,average='micro'))